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Abstract
A numerically stable method for accurately determining the energy minibands
of superlattices with arbitrary numbers of layers per cell is presented. Using a
graph model with tangent and secant functions, we derive a set of concise and
closed-form miniband edge equations for determining the miniband structure
using topology theory. With the present method, it is not necessary to calculate
the cosine of the Bloch phase, which may show a numerical overflow in
calculation. Numerical results show that use of the miniband edge equations has
better numerical stability than traditional methods in calculating the minibands
of complex basis superlattices.

1. Introduction

Superlattices and multiple quantum wells have been extensively researched as novel materials
for various applications in microelectronics. Determination of the miniband structures on
the basis of Bloch waves is fundamental for studying the properties of electron behaviour in
infinite superlattices [1]. Moreover, the minibands are also the dominant reference for semi-
infinite [2–4] and finite superlattices [5–7]. Minibands of a superlattice are usually determined
by solving the dispersion equation, which is obtained from the eigenvector–eigenvalue problem
or the determinant of the system. For a binary superlattice, the dispersion relation has been
expressed using the Kronig–Penney equation. In recent years, superlattices with a complex
basis have received great interest [8–18]. When the number of layers in each cell is greater
than two, the analytical expression of the dispersion relation becomes complex [11–13]. Thus,
the electronic minibands for the complex basis superlattice are usually calculated by numerical
methods [17–22].

The transfer matrix method [17–19] is one of the most popular methods for applying to the
analysis of the complex basis superlattice. One of the advantages is that the dispersion relation
for the minibands can be easily framed in a concise form, in which the cosine of the Bloch phase
is expressed as half the trace of the global transfer matrix for a cell. However, the transfer matrix
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Figure 1. Potential profile of cell n of a one-dimensional complex basis superlattice with N layers
per period.

method has a numerical instability problem when calculating the global transfer matrix. Some
techniques have been proposed to avoid the numerical problem in computing [23]. Besides,
the cosine of the Bloch phase is usually applied to determine the minibands in most numerical
methods. Unfortunately, numerical instability may occur in calculating the cosine of the Bloch
phase. Recently, an alternative dispersion relation expressed using tangents and cotangents
was proposed to avoid the numerical problem [24]. However, calculating the minibands by
the method is tedious, since the dispersion relation is gained by zeroing the determinant of a
2N × 2N matrix for an N-basis superlattice.

In this paper, a two-way graph model expressed using tangent and secant functions is
presented for the analysis of the electron motion in multilayer superlattices. Using the graph
model and the properties of the Bloch wave, a numerically stable method for determining the
minibands for complex basis superlattices is proposed. A novel miniband edge equation is
derived and used to calculate the minibands rather than using the cosine of the Bloch phase.
Also, each term of the equation is expressed in a concise analytical form using a topology
scheme [25, 26]. Using these derived formulae, it is convenient to obtain the bandgaps of the
superlattice. Besides, this method does not suffer from problems of numerical instability in
solving for the minibands. As far as we know, an analytical miniband edge equation with a
graph model has rarely been proposed for solving for the minibands of a general superlattice.

In section 2 the relationships of the wavefunctions in each layer of the superlattice are
drawn up using a graph representation. According to the special graph model and Floquet’s
theorem, a concise miniband edge equation for the miniband calculation is derived. A topology
theory is applied to calculate each term of the miniband edge equation without using iterative
calculation. In section 3, a binary superlattice is explored to show our derived formulae. Finally
an N-layer basis superlattice is examined using the proposed method and the transfer matrix
method to prove the feasibility and benefits of this method.

2. The model and method

We consider an infinite superlattice with periodic cells, each of which consists of N layers
as shown in figure 1. On the basis of an envelope-function approximation, the motion of an
electron near the conduction band bottom is described by an effective mass equation

−h̄2

2

d

dz

[
1

m∗(z)
d

dz
ψ(z)

]
+ U(z)ψ(z) = Eψ(z), (1)
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Figure 2. Graph model for cell n of a superlattice with N layers per period.

where m∗ is the effective mass of the electron, U(z) is the potential, and E is the electronic state
energy; ψ(z) is the electron wavefunction. For the structure of the superlattice, the potential
barrier heights, effective mass values and thicknesses for layer j in each cell are U j , m∗

j , and
d j , respectively. The general solution to equation (1) in the j th layer of cell n is given by

ψ(n, j, z) = an, j e
ik j (z−zn, j−1) + bn, j e

−ik j (z−zn, j−1), (2)

where an, j and bn, j are the amplitudes of the forward and the backward waves for the
wavefunction, respectively, and k j represent the wavevectors, k j = h̄−1(2m∗

j(E − U j ))
1/2.

The amplitudes of the forward and the backward waves of the layer can be expressed using the
wavefunction at the left and the right boundaries

an, j = ψ(n, j, zn, j )− ψ(n, j, zn, j−1) e−ik j d j

2i sin(k j d j)
, (3a)

bn, j = ψ(n, j, zn, j−1) eik j d j − ψ(n, j, zn, j)

2i sin(k j d j)
. (3b)

From equation (2), we have the slope of the wavefunction within layer j , ψ ′(n, j, z):

ψ ′(n, j, z) = ik j(an, j e
ik j (z−zn, j−1) − bn, j e

−ik j (z−zn, j−1)). (4)

Substituting equations (3a) and (3b) into equations (2) and (4), the wavefunction and its slope
within the layer are represented by the wavefunctions at the boundary of the layer. Using
Bastard’s boundary conditions, the wavefunctions at the intersection of two neighbouring layers
satisfy

ψ(n, j, zn, j ) = ψ(n, j + 1, zn, j ), for j = 1, 2, . . . , N (5a)
1

m∗
j

ψ ′(n, j, zn, j) = 1

m∗
j+1

ψ ′(n, j + 1, zn, j ), for j = 1, 2, . . . , N (5b)

where layer N+1 of cell n is the renamed layer 1 of cell n+1. These relations of wavefunctions
at the boundary of layer j can be described by

An, j = f j An, j−1 + h j Bn, j , (6a)

Bn, j−1 = f j Bn, j + g j An, j−1, (6b)

where f j = sec k j d j , g j = (k j/m∗
j) tan k j d j , h j = (m∗

j/k j ) tan k j d j , An, j = ψ(n, j, zn, j )

and Bn, j = ψ ′(n, j, zn, j)/m∗
j . Since the values of sec k j d j , (k j/m∗

j) tan k j d j , and
(m∗

j/k j) tan k j d j do not change for either the positive or negative sign for the square root of
k j , both signs for the square root of k j are acceptable for equations (6a) and (6b).

We can depict the relations of the amplitudes using a two-way graph model as shown in
figure 2. For the model, the lower side state flows at both ends are all in the rightward flow
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direction and the upper side state flows are in the leftward flow direction. Figure 2 shows
the connection of the graph models for N layers in a cell of the superlattice. We see the
amplitudes An,N and Bn,0 are dependent on the amplitudes An,0 and Bn,N . Thus, An,N and Bn,0

are expressed as

An,N = An,0 f + Bn,N h, (7a)

Bn,0 = Bn,N f + An,0g. (7b)

Since cells n and n + 1 are connected for n = 1, 2, . . ., we have zn,N = zn+1,0, An,N = An+1,0,
and Bn,N = Bn+1,0.

We see that the coefficients of equations (7a) and (7b), f , g and h, are dependent on
the structure of a cell of the superlattice. On the basis of the graph representation for a
cell of the structure, these functions are easily calculated by a topology method. Using the
topology theory [25, 26], the ratio of an output to an input for a given graph model is equal to∑

j Pj D j/D, where Pj is the path gain of the forward path j , D j is the cofactor of the j th
forward path, and D is the determinant of the graph defined by D = 1 − ∑

(all individual
loop gains) + ∑

(gain products of all possible pairs of loops that do not touch) − ∑
(gain

products of all possible triplets of loops that do not touch) + · · ·. For a cell with an N-layer
basis superlattice, we see that the arrangement of the graph model for the cell shown in figure 2
is a special lead structure. Let L p,q be the gain of the loop passing through the downward
vertical path for the pth layer and the upward vertical path for the qth layer given by

L p,q = h pgq

q∏
j=p

f 2
j . (8)

Using the topology formula, the determinant of a part of the graph model for the structure from
layers p to q is represented by

S p,q =
q−p∑
s=0

q∑
i2s=p+s

i2s−1∑
i2s−1=p+s−1

i2s−1∑
i2s−1=p+s−1

i2s−1−1∑
i2s−2=p+s−2

· · ·
i3∑

i2=p+1

i2−1∑
i1=p

s∏
u=1

(−Li2u−1,i2u ). (9)

According to equation (7a), the function f is equal to the response of the amplitude An,N

related to input An,0 for zero Bn,N . There is only one forward path from An,0 to An,N with
gain

∏N
j=1 f j . The cofactor of this forward path is equal to 1 since all of the loops contact the

forward path. Thus the function f is expressed by the form

f =
N∏

j=1

f j/S1,N . (10)

Equation (7b) shows that the function g is equal to the response of the amplitude Bn,0

related to input An,0 for zero Bn,N . We see there are N forward paths from An,0 to Bn,0. For the
path passing the vertical upward path gp, the forward path gain is gp

∏p−1
j=1 f 2

j and the cofactor
is S p,N . By the topology theory, we have

g = 1

S1,N

N∑
p=1

S p,N gp

p−1∏
j=1

f 2
j . (11)

The function h given in equation (7a) is equal to the response of the amplitude An,N related to
input Bn,N for zero An,0. In the same way, we can derive the function h as

h = 1

S1,N

N∑
p=1

S1,ph p

N∏
j=p+1

f 2
j . (12)
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According to Floquet’s theorem, the wavefunction in an infinite periodic superlattice must
obey the Bloch wave relations. The relations between the amplitudes at the ends of a cell are
satisfied by the conditions

Bn,N = Bn,0 exp(iK L), (13a)

An,0 = An,N exp(−iK L). (13b)

Substituting equations (13b) and (13a) into equations (7a) and (7b) yields

1 − gh + f 2 − 2 f cos(K L) = 0. (14)

The forbidden gap is given by the condition of |cos(K L)| > 1. With this condition, the Bloch
wavenumber K is complex and the Bloch wave is evanescent. The allowed energy band occurs
when |cos(K L)| � 1. In the allowed energy band, K is a real value and the Bloch wave
is propagating in the superlattice. The kernel of calculating miniband structure is finding the
band edge, which occurs for the condition cos(K L) = ±1. By substituting cos(K L) = ±1
into equation (14), we have the miniband edge equations

(1 ∓ f )2 − gh = 0. (15)

Equations (15) are the major equations of this paper. Using equations (15), it is not required to
calculate cos(K L) in finding the miniband edge. Also, the centre of allowed minibands, using
cos(K L) = 0, can be written as

1 − gh + f 2 = 0. (16)

The miniband centre equation given in equation (16) can be used to check the regime for the
allowed minibands.

In most numerical methods, cos(K L) is used to determine the miniband structure. First,
the values of cos(K L) related to energy higher than the minimum value of U j are calculated.
Next, the band edges are determined using the condition cos(K L) = ±1. However, calculation
of cos(K L) may have numerical overflow as shown in the following numerical examples.

3. Results and discussion

3.1. Theoretical demonstration using a binary superlattice

To demonstrate the present theory, a simple case of a two-layer based superlattice is studied
since the typical dispersion equation for the simple case is well known. The potential
barrier heights, effective mass values and thicknesses for layer 1 of a cell are Ua , m∗

a , and
da , respectively, and those for layer 2 are Ub, m∗

b, and db. Let us consider the condition
Ua < Ub. The wavevectors corresponding to layers 1 and 2 are ka = h̄−1(2m∗

a(E − Ua))
1/2

and kb = h̄−1(2m∗
b(E − Ub))

1/2 respectively. The miniband structure is first examined to
verify the miniband edge equations presented as equations (15). To get the transmission and
reflection coefficients, the determinant for each cell should be calculated. A detailed procedure
for calculating the determinant for each cell using our method is shown as follows. For the case
of Ub < E , both ka and kb are real values. According to equation (9), we have S1,2 = ∑1

s=0 As .
Since there is no summing operation required for s = 0, we have A0 = 1. For s = 1, a pair of
summing operations is required, A1 = ∑2

n2=2

∑n2−1
n1=1 (−Ln1,n2) = −L1,2. From equation (8),

L1,2 is given by L1,2 = m∗
a kbta tb
m∗

bka
, where t j is the symbol for tan k j d j , j = a, b. Thus we have

S1,2 expressed as S1,2 = 1 − L1,2. According to equations (10)–(12), we have f = eaeb/D,
g = (kata/m∗

a + kbtb/m∗
b)/D and h = (m∗

bta/ka + m∗
atb/kb)/D, D = 1 − (kbm∗

a/kam∗
b)tatb,

5
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Figure 3. Comparison of cos(K L) and absolute values of J±1 for a biperiodic superlattice, in
which the width of each layer is 2 nm and the concentrations in each of the layers are x1 = x3 = 0,
x2 = 0.5, x4 = 0.7, where the subscript of x corresponds to the number of the layer.

where e j is the symbol for sec k j d j , j = a, b. Using equations (15), we can derive the miniband
edge equation as

1 − 1

2

(
kam∗

b

kbm∗
a

+ kbm∗
a

kam∗
b

)
tatb ∓ eaeb = 0. (17)

For the condition Ua < E < Ub, ka is real and kb is imaginary. Thus, kb is usually redefined
as iκb, where κb is a real value. Besides, sec(kbdb) and tan(kbdb) are replaced by sech(κbdb)

and i tanh(κbdb). In the condition, equation (17) is identical to the band edge condition from
the typical dispersion equation, cos(K L) = ±1, in traditional methods [1].

3.2. Numerical examples of multilayer superlattices

For numerical implementation of the present theory, a biperiodic (four-layer basis) superlattice
made of Alx Ga1−x As is examined. The effective mass and potential of the Alx Ga1−x As layer
are m∗(x) = (0.067 + 0.083x)m∗

e and U(x) = 944x meV, respectively. The concentration for
each layer is x1 = x3 = 0, x2 = 0.5, x4 = 0.7, in which the subscript of x corresponds to
the number of the layer. The widths of all layers are the same, equal to 2 nm. As we know,
the minibands for the superlattice are usually determined by the function cos(K L) calculated
using the traditional dispersion equation. However, the miniband edge equations, given as
equations (15), are used in this method. Here, we define the left-hand sides of equations (15)
and (16) as respectively J±1 and J0, which are dependent on the energy E . The roots of J±1 = 0
are just located at the edges of the allowed bands. The absolute values of J±1 and cos(K L) for
the energy E > 0 were plotted for comparison, as shown in figure 3. We see that the solutions
of J±1 = 0 are just equal to those of cos(K L) = ±1.

For the width of each layer varied over the range from 2 to 200 nm, the miniband analyses
by the present method and traditional methods are compared. The maximum absolute values
of cos(K L), used in the traditional method, and those of J±1 and J0, used in this method,
versus the width of each layer are shown in figure 4. We see that max(|cos(K L)|) in traditional
analysis increases in exponent versus the width of each layer but max(|J+1|, |J−1|, |J0|) in this
method do not enlarge with increasing width.

6
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Figure 4. The maximum absolute values of cos(K L), J±1 and J0 versus the width of each layer
for a biperiodic superlattice made of Alx Ga1−x As. The concentrations in each of the layers are
x1 = x3 = 0, x2 = 0.5, x4 = 0.7.

Figure 5. The maximum absolute values of cos(K L), J±1 and J0 for an N -layer basis superlattice.
The parameters are dn = 2(1 + n

N ) nm, x1 = x3 = · · · = xN−1 = 0, x2 = x4 = · · · = xN = 0.5.

We next study the numerical implementation for an N-layer superlattice, in which the
concentration of each odd layer is 0 and that of each even layer is 0.5. For each period, the
width of each layer is dn = 2(1 + n

N ) nm. For calculating the miniband structures, with
N is varied from 2 to 70, the absolute values of cos(K L), J±1 and J0 versus N are shown
in figure 5. We can see that max(|J+1|, |J−1|, |J0|), used in this method, is almost constant
but max(|cos(K L)|), used in traditional methods, enlarges exponentially with increasing N .
These results show that this method provides more robust numerical stability than traditional
methods.

7
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4. Conclusions

We have proposed a novel method for finding the miniband structure of complex basis
superlattices. In this paper, we derive a set of miniband edge equations, equations (15), for
computing the minibands of general basis superlattices based on a two-way graph model with
tangent and secant functions. These new equations can be directly used to solve for the edge
of the minigap without computing the cosine of the Bloch phase. Numerical results show
that use of the equations presented to find the minibands has more stability than use of the
cosine of the Bloch phase in traditional methods. Also, the coefficients of the miniband edge
equation are expressed using three characteristic functions, f, g, h, for a cell of the periodic
structure. Analytical and concise expressions for each characteristic function are derived and
shown in equations (10)–(12). Thus, it is convenient to obtain the miniband edge equation
and its coefficients from the derived formulae without recursive calculation. Although the
minibands of superlattices have been examined in this paper, it is easy to extend the method
and the idea of the study to more properties for infinite, semi-infinite or finite superlattices.
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